Key Ideas

(Complete these questions AFTER you have taken notes and finished the section worksheet.)

Section 1.1: The Nature of Science

1. How do scientists explore the world?
\qquad
\qquad
\qquad
2. How are the many types of science organized?
\qquad
\qquad
\qquad
3. What are scientific theories, and how are the different than scientific laws?
\qquad
\qquad
\qquad

Section 2: The Way Science Works

1. How can I think and act like a scientist?
\qquad
\qquad
\qquad
2. How do scientists measure things?
\qquad
\qquad
\qquad

Section 3: Organizing Data

1. Why is organizing data an important science skill?
\qquad
\qquad
\qquad
2. How do scientists handle very large and very small numbers?
\qquad
\qquad
\qquad
\qquad
3. How can you tell the precision of a measurement?
\qquad
\qquad
\qquad
\qquad
Concepts I need to review/practice before the chapter test.

Section 1.1: The Nature of Science

1. Identify the 2 Main branches of science and give a short description of each.
a. \qquad
\qquad
b. \qquad
\qquad
2. What are the 3 branches of natural science?
a. \qquad
b. \qquad
c. \qquad
3. Give 2 examples for each branch of natural science.
a. \qquad
b. \qquad
4. Define scientific theory and scientific law AND give an example of each.
a. \qquad
b. \qquad
5. Explain how a scientific theory and a scientific law are different.
\qquad
\qquad
6. For a scientific theory to be valid, it must...
a. \qquad
b. \qquad
c. \qquad
7. Compare AND contrast qualitative data and quantitative data.
\qquad
\qquad
\qquad
8. Identify the following as qualitative data (L) or quantitative data (T).
\qquad
32 grams \qquad

12 feathers \qquad
\qquad Large \qquad $3 \mathrm{~g} / \mathrm{ml}$ \qquad
12 m \qquad
Fuzzy \qquad
$0.45 \mathrm{~m} / \mathrm{s}$ \qquad
9. Circle the qualitative data and place a rectangle around the quantitative data in the following statements.
a. The small, round ball had a mass of 2.5 grams.
b. Sixteen people waiting in line for more than 4 hours to see Imagine Dragons.
c. In the last basketball game, two people scored more than 15 points.
d. If a tall, brown tree falls in the forest, does it make a sound?
e. If you combine 3 red jars of water with 2 yellow jars of water, what color will it be?

Complete the Key Ideas Section

Section 1.2: The Way Science Works

10. The data in Table 1 was collected during an experiment. Use this data to complete the following questions.
a. Identify the variable(s) in the experiment.
\qquad
b. Identify the dependent variable(s) in the experiment.
\qquad
c. Identify the independent variable(s) in the experiment.
\qquad
d. Identify the control(s) in the experiment.
\qquad
e. Identify the constant(s) in the experiment.
\qquad
f. Does the following experiment prove the fertilizers helped the pants grow? Explain.
\qquad
\qquad
\qquad

Table 1					
Plant	Amount of Water Received (mLevery 3 days)	Amount of Sunlight received (Hours/day)	Fertilizer Brand	Height after 2 weeks (cm)	
A	10	6	A	16	
B	10	6	B	8	
C	10	6	C	18	
D	10	6	None	10	

Physical Science Chapter 1: Intro to Science

Asking Questions: The Scientific Method
The scientific method is a systematic approach to solving problems. Professional scientists are not the only people to use this approach. It is a method you use every day to solve problems, from deciding what to wear to figuring out a new video game.

There are 7 steps to the scientific method:

* State the problem
- Before one can solve a problem, he/she must understand what the problem is and be able to state it.
- To understand a problem and find the best answers, you must ask the right questions: Who? What? When? Where? Why? How?
- One of the hardest steps of the scientific method
* Make observations-gather information on the problem.
- Ask Who? What? When? Where? Why? How?
* Form a hypothesis
- hypothesis-
* Experiment to test the hypothesis
$>$ Every experiment has 2 groups
- Variable group-
- Independent variable
- Dependent variable
- Control group
* Record and analyze data
> Use graphs, tables, charts, etc.
* State conclusion
* Repeat the work/share results

Part I .

11. List the 7 steps of the scientific method in order AND give a one sentence explanation of each.
g. \qquad
h. \qquad
i. \qquad
j. \qquad
k. \qquad
I. \qquad
m. \qquad
12. Before proposing a hypothesis, what 2 steps must a scientist take?
n. \qquad
\qquad
o. \qquad
\qquad
13. How does a scientist test a hypothesis?
\qquad
\qquad
14. What is a variable?
\qquad
\qquad
15. What two groups does every well designed experiment have?
p. \qquad
q. \qquad
16. What are some ways data is recorded and analyzed?
\qquad
\qquad
\qquad
\qquad
17. Why is the work repeated?
\qquad
\qquad
\qquad
18. Is the scientific method always so orderly?
\qquad
\qquad
\qquad
19. Explain what bias is and how it can affect the results of an experiment.
\qquad
\qquad

Physical Science Chapter 1: Intro to Science

Part II.

You are a doctor and you specialize in stomach cancer. Over the last several years, you have noticed that patients who drink Diet Coke seem to recover more quickly and have less severe cases of stomach cancer. You want to conduct a formal scientific study to determine if this might be true. Using the steps of the scientific method do the following:
20. What is your problem?
21. What sources would you use to gather information?
\qquad
\qquad
22. State a hypothesis.
\qquad
\qquad
23. Design an experiment to test your hypothesis. In your experiment, CLEARLY identify variable group, control group, independent variable, and dependent variable.
24. Identify the 3 countries that use the English system of measurement.
r. \qquad
S. \qquad
t. \qquad
25. What is the abbreviation for International System of Units?
\qquad
26. Complete the following table.

Quantity	SI Unit	SI Abbreviation
Mass		
Length	Mole	
		s
Temperature		

27. What is a derived unit?
28. Circle ALL of the data that utilizes derived units.

$$
45 \mathrm{~g} / \mathrm{mL} \quad 16 \mathrm{~m} \quad 12 \mathrm{~kg} \quad 0.55 \mathrm{~m} / \mathrm{s} \quad 1.5 \mathrm{~kg} \text { * }
$$

29. Write down 3 other examples of a derived unit label.
30. Write the abbreviations for the following prefixes UNDER each prefix.
Kilo- Hecto- Deca- Base Unit Deci- Centi- Milli-
31. Write down a mnemonic to help you remember the order of the prefixes. (You will be required to memorize the order of these prefixes!!)
\qquad
\qquad
32. Complete the following table by writing in the abbreviation OR the actual label.

Label	Abbreviation	Label	Abbreviation
Kilometer	km		mm
Milligram			ks
	hg	Hectometer	
Decisecond			dag

33. Complete the following conversions.

Make sure to show your work using the "Cross Method"

Measurement	=	Conversion	Work
805 m	=	km	
596,254 mm	$=$	hm	
456 dag	$=$	__cg	
98 km	$=$	\ldots m	

34. Complete the following conversions.

Make sure to show your work using the "Cross Method"

Measurement	=	Conversion	Work
123.55 mm	=	km	
9381 L	$=$	mL	
0.05 dm	$=$	__mm	
0.099 dag	=	___cg	
98 s	$=$	$\ldots \ldots m i n$	

35. Complete the following HARDER conversions.

Make sure to show your work using the "Cross Method"

Measurement	=	Conversion	Work
28 hrs	$=$	days	
1.2 hr	$=$		
1.4 months	$=$	S	

36. You are walking on a dirt path when you trip over a rectangular block of metal. It has a length of 3.5 cm , a width of 14 cm , and a height of 0.15 m . If this block has a mass of 735 grams, what is the density of the block? (Show work)
37. You are walking on a dirt path when you trip over a shiny, distorted hunk of metal. You decided to determine the density of the hunk of metal so you place it in a graduated cylinder of water. If the hunk of metal displaces 55 mL of water and has a mass of 12 grams, what is the density of the block? (Show work)
38. You drop a rock from the top of a 2.1 meter tall ladder. How far does the rock drop in kilometers? (Show work)
39. Complete the following conversions. (Remember that when you are multiplying measurements, the units MUST be the same)

Measurement $\mathbf{1}$		Measurement $\mathbf{2}$	Work and LABELED Answer
3 cm	x	5 cm	
62 m	x	1.25 m	
34 g	\div	150 mL	
12.8 kg	\div	1.4 L	
13.5 cm	x	125 mm	

Complete the Key Ideas Section

Section 1.3: Organizing Data

You will be completing a majority of the Section 1.3 Worksheet IN CLASS.
40. What is the definition of a graph?

Graph Requirements

- When making a graph the independent variable is on the horizontal axis (x-axis) and the dependent variable is always on the vertical axis (y-axis).
- You can remember this because the "ticks" on the horizontal axis look like "I's"
$0+||||||| | \leftarrow$ It looks like an "I"
- A graph should ALWAYS have a TITLE and LABELED AXIS
- When making a graph, you should make it large enough to use (i.e. don't make a graph in the corner of a page, use most of the page).

A line graph (scatter graph) can show any relationship where the dependent variable changes due to a change in the independent variable.
41. Graph the following data in a line/scatter graph.

Time (min)	Distance from start for car A (km)	Distance from start for car B (km)	Distance from start for car C (km)
10	2	2	1
20	4	3	3
30	6	5	6
40	8	7	7
50	10	8	4
60	12	11	0

A bar graph is useful for comparing information collected by counting.
42. Graph the following data in a bar graph.

Day of the Week	Time spent studying for person A (hr)	Time spent studying for person B (hr)
Monday	0.5	0.5
Tuesday	0	0.5
Wednesday	0	1.5
Thursday	0.5	2
Friday	4	2
Saturday	3.5	1
Sunday	1	3.5

Sometimes when you are graphing, the data you collected is a long way away from " 0 ". When this happens you can make a squiggly line (like below) and start you axis data at a higher number.

When would you use the "squiggly line"?

A circle graph, or pie graph, is used to show how some fixed quantity is broken down into parts.

How to accurately create a pie graph

1. To create a circle graph, you start with the total of what you are analyzing.
2. Then you divide the number of each type by the total.
3. You then multiply that decimal by 360 to determine the angle that the decimal makes in the circle.
For example: if 18 of the 72 kids liked dogs you would...
a. Divide 18 by 72 and take it time 360 . This equals 90 (or 90° on the circle graph)
b. You then would measure and mark out 90° on the circle using a protractor

- Each section of a pie graph represents a percentage of a whole. The larger the slice, the larger the percentage.
- This is the type of graph you would use when dividing up a whole. This is also the graph you usually use when dealing with percentages.

43. Complete the table and Graph the following data in to a circle graph.

Color	Number of vehicle with that color	Percentage of circle
Blue	15	
Green	5	
Grey	17	
White	16	
Black	25	
Red	38	
Purple	1	

44. Explain why you would use scientific notation when writing down a number.
45. Complete the following table be either writing the number in scientific notation format or by reverting the number into standard format. (Make sure to label your answer)

Standard Format	Scientific Notation Format
$145,000,000$ grams	1.45×10^{8} grams
$85,450,000,000 \mathrm{~m}$	$6.5 \times 10^{3} \mathrm{kilograms}$
	$1.5 \times 10^{-4} \mathrm{~km}$
0.0000000095 km	
$15,000 \mathrm{~m}$	
$1,459,824 \mathrm{~km}$	

46. What are the rules for multiplying and dividing scientific notation?

Multiplying: \qquad

Dividing: \qquad
47. What are the rules for adding and subtracting scientific notation?

Adding: \qquad

Subtracting: \qquad
48. Using the scientific notation rules for adding, subtracting, multiplying, and dividing, answer the following math problems.
(Show your work and answer in scientific notation)
a. $1.2 \times 10^{3}+4.5 \times 10^{2}=$ \qquad
Work
b. $\quad 1.24 \times 10^{3}-3.2 \times 10^{5}=$ \qquad
Work
c. $4.5 \times 10^{12} \times 6.854 \times 10^{3}=$ \qquad
Work
d. $5.28 \times 10^{2} / 7.1 \times 10^{3}=$

Work
49. Why do you think significant figure are important?
50. How many significant figures on in the following numbers?

Number	Sig Figs	Number	Sig Figs
158		0.40550	
1.92		0.0080501	
1.560		159000	
0.058		0.0505	
186.220		1050	

51. What are the rules for multiplying and dividing sig figs?

Multiplying: \qquad

Dividing: \qquad
52. What are the rules for adding and subtracting sig figs?

Adding: \qquad

Subtracting: \qquad
53. Answer the following math problem using significant figure rules.
(Make sure to get your labels correct)
a. $1.5 \mathrm{~cm} \times 0.25 \mathrm{~cm}=$ \qquad

Your answers may look wrong to you but trust the process!
b. $150 \mathrm{~m} / 4 \mathrm{~s}=$ \qquad
c. $84.26 \mathrm{~cm}+1.5999 \mathrm{~cm}=$ \qquad
d. $\quad 1000 \mathrm{~g}-250 \mathrm{~g}=$ \qquad
54. Determine if the following statements are accurate, precise, both, or neither.

Statement	Accurate, precise, both, or neither
a. You throw 10 darts at the bulls-eye of a dart board. All of them hit the upper left hand corner of the dart board.	
b. You shoot 15 three point shots from the top of the three point line and make 13 of the shots; your other 2 shots bounce off the front of the rim.	
c. You try to throw 5 washers into a can but miss 2 long, 1 short, and 2 to the left of the can.	
d. You shoot an arrow into the bulls-eye of a target. (You were aiming for the bulls-eye)	
e. You measure the length of a board with a meter stick 5 times. Each time you get the same measurement of 76 cm . You find out later that the first 5 cm of the meter stick is missing.	

55.Explain why you chose your answers for question 54.

a.	Reasoning
b.	
c.	
d.	
e.	

Complete the Key Ideas Section

