\qquad Class \qquad Date \qquad
Skills Worksheet

Math Skills

Kinetic Energy

After you study each sample problem and solution, work out the practice problems on a separate sheet of paper. Write your answers in the spaces provided.

PROBLEM

A 725 kg automobile has a kinetic energy of J as it travels along a highway. What is the car's speed?

SOLUTION

Step 1: List the given and unknown values.
Given: mass, $m=725 \mathrm{~kg}$
kinetic energy, $K E=3.02 \times 10^{5}$
Unknown: speed, $v=? \mathrm{~m} / \mathrm{s}$
Step 2: Write the kinetic energy equation, and rearrange it to solve for speed.

$$
\begin{aligned}
& \text { kinetic energy }=\frac{1}{2} \times \text { mass } \times \text { speed squared } \\
& \begin{aligned}
K E \times \frac{2}{m} & =\frac{1}{\not 2} m v^{2} \times\left(\frac{\not 2}{\not m}\right)=v^{2} \\
v & =\sqrt{v^{2}}=\sqrt{\frac{2 K E}{m}}
\end{aligned}
\end{aligned}
$$

Step 3: Insert the known values into the equation, and solve.

$$
\begin{aligned}
& v=\sqrt{\frac{2\left(3.02 \times 10^{5} \mathrm{~J}\right)}{725 \mathrm{~kg}}}=\sqrt{\frac{2\left(3.02 \times 10^{5} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}\right)}{725 \mathrm{~kg}}} \\
& v=28.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

PRACTICE

1. When a 65 kg skydiver jumps from a plane, her speed steadily increases until air resistance provides a force that balances the force due to free fall. How fast is the skydiver falling if her kinetic energy at the moment is $7.04 \times 10^{5} \mathrm{~J}$?
2. The kinetic energy of a golf ball is measured to be 143.3 J . If the golf ball has a mass of about 47 g , what is its speed?
\qquad Class \qquad Date \qquad
Math Skills continued

PROBLEM

The greatest speed that a meteoroid can have and still be pulled down to Earth's surface is $70.0 \mathrm{~km} / \mathrm{s}$. If a meteoroid traveling with this speed has a kinetic energy of $2.56 \times 10^{13} \mathrm{~J}$, what is its mass?

SOLUTION

Step 1: List the given and unknown values.

Given: speed, $v=70.0 \mathrm{~km} / \mathrm{s}=7.00 \times 10^{4} \mathrm{~m} / \mathrm{s}$
kinetic energy, $K E=2.56 \times 10^{13} \mathrm{~J}$
Unknown: mass, $m=$? kg
Step 2: Write the kinetic energy equation, and rearrange it to solve for mass.
kinetic energy $=\frac{1}{2} \times$ mass \times speed squared
$K E=\frac{1}{2} m v^{2}$
$K E \times\left(\frac{2}{v^{2}}\right)=\frac{1}{\not 2} m \vartheta^{2} \times\left(\frac{\not 2}{\not y^{2}}\right)=m$
Step 3: Insert the known values into the equation, and solve.

$$
\begin{aligned}
& m=\frac{2 \times\left(2.56 \times 10^{13} \mathrm{~J}\right)}{\left(7.00 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)^{2}}=\frac{2 \times\left(2.56 \times 10^{13} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}\right)}{\left(7.00 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)^{2}} \\
& m=1.04 \times 10^{4} \mathrm{~kg}
\end{aligned}
$$

PRACTICE

3. The most massive Shinkansen bullet trains are the series-200 trains. This type of train also has one of the highest operating speeds: $76.4 \mathrm{~m} / \mathrm{s}$. If a series-200 train has a maximum kinetic energy of $2.78 \times 10^{9} \mathrm{~J}$, what is its mass?
4. The largest airplane built that has flown more than once is the Ukrainian-built Antonov-225 Mriya. With a length of 85 m and a wingspan of 88 m , the Mriya (Dream) was designed to carry the space shuttle of the Soviet Union's space program. Unloaded, the top speed of Mriya is $236 \mathrm{~m} / \mathrm{s}$, at which its kinetic energy is $9.76 \times 10^{9} \mathrm{~J}$. What is its mass?
5. The vehicle land-speed record has long been held by rocket cars. These vehicles resemble the high-speed rocket planes that were used in the early days of the space program, but they have heavy metal wheels. On September 5, 1997, the world land-speed record was set by the British-built Thrust SSC rocket car, which had a top recorded speed of $341 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the car at this speed is $5.289 \times 10^{8} \mathrm{~J}$. What is the car's mass?
\qquad Class \qquad Date \qquad

PROBLEM

A baseball is pitched with a speed of $35 \mathrm{~m} / \mathrm{s}$. If the baseball has a mass of 0.146 kg , what is its kinetic energy?

SOLUTION

Step 1: List the given and unknown values.

Given: mass, $m=0.1499 \mathrm{~kg}$
speed, $v=35 \mathrm{~m} / \mathrm{s}$
Unknown: kinetic energy, $K E=$? J

Step 2: Write the equation for kinetic energy.

kinetic energy $=\frac{1}{2} \times$ mass \times speed squared $\quad K E=\frac{1}{2} m v^{2}$
Step 3: Insert the known values into the kinetic energy equation, and solve.

$$
\begin{aligned}
& K E=\frac{1}{2}(0.146 \mathrm{~kg}) \times(35 \mathrm{~m} / \mathrm{s})^{2}=89 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& K E=89 \mathrm{~J}
\end{aligned}
$$

PRACTICE

6. A cheetah can run briefly with a speed of $31 \mathrm{~m} / \mathrm{s}$. Suppose a cheetah with a mass of 47 kg runs at this speed. What is the cheetah's kinetic energy?
7. A table tennis (ping-pong) ball has a mass of about 2.45 g . Suppose the ball is hit across the table with a speed of about $4.0 \mathrm{~m} / \mathrm{s}$. What is its kinetic energy?

MIXED PRACTICE

8. The largest land predator is the male polar bear, which typically has a mass of around $5.00 \times 10^{2} \mathrm{~kg}$. If the maximum kinetic energy for a polar bear with this mass is $6.05 \times 10^{4} \mathrm{~J}$, what is its top speed?
9. Though slow on land, the leatherback turtle holds the record for the fastest water speed of any reptile: $9.78 \mathrm{~m} / \mathrm{s}$. It is also among the largest of reptiles. Suppose the largest leatherback yet discovered were to swim at a speed of $9.78 \mathrm{~m} / \mathrm{s}$. If its kinetic energy was $6.08 \times 10^{4} \mathrm{~J}$, what was its mass?
