Introduction to Science

Chapter 1

The Nature of Science

Section 1.1

Key Ideas

- How do scientists explore the world?
- How are the many types of science organized
- What are scientific theories, and how are the different than scientific laws?

How Science Takes Place

- A scientist may perform experiments to find a new aspect of the natural world, to explain a known phenomenon, to check the results of other experiments, or to test the predictions of current theories.
- What does this mean?

What do scientists do?

- Investigate
- Plan Experiments
- Observe
- Test the Results
- On a separate sheet of paper, write down these 4 steps and Complete the "Quick Activity" on the next slide.
- Write down how you completed the 4 steps

The Branches of Science

- Science: the knowledge obtained by observing natural events and conditions in order to discover facts and formulate laws or principles that can be verified or tested
- How often do you think you perform
"science"?
- Examples

The Branches of Science

- There are 2 Main Branches...

1. Social Sciences
2. Individual and group behaviors
3. Natural Sciences
4. Tries to understand how nature (or universe) works
What is an example of a social science class? Natural science class?

The Branches of Science

Natural Sciences

- Biological Science: living things
- Botany, Ecology
- Physical Science: Matter and Energy (NRG)
- Chemistry: Matter and its changes
- Physics: Forces and NRG
- Earth Science: Earth, Atmosphere, and Weather
- Geology, Meterology

The Branches of Science

- Do these natural sciences work together or ever overlap?
- Of Course!
- What science are overlapping?
- Looking at the makeup of DNA
- Studying Earthquakes
- Launching a rocket into space
- Fertilizing a plant
\qquad
\qquad

The Branches of Science

- Science and Technology work together!
- Technology: the application of science for practical purposes
- What are some examples of technology and what are their practical purposes?

Scientific Laws and Theories

- What are scientific theories, and how are they different from scientific laws?
- Theory: is an explanation of things or events based on knowledge gained from many observations and investigations. It is not a guess
- Law: a descriptive statement or equation that reliably predicts events under certain conditions

Compare and Contrast...

- Theory
- Open to be challenged
- Explains many different laws
- Explains how or why something happens
- Law
- Is always TRUE
- Does NOT explain how or why
- Can be an equation

Scientific Laws and Theories

- Scientific theories are always being questioned and examined. To be valid, a theory must:
- Explain the observations
- Be repeatable
- Be predictable

Quick Activity

\qquad
\qquad
\qquad

- The Earth is flat is an example of a theory that was believed for a very long time.
- Apply the 3 criteria (required for a theory to be supported) to this theory
- Group A: Support it
- Group B: Disprove it

Quick Activity (cont.)

- All group A's get together on the right side of the room
- All group B's get together on the left side of the room
- Come up with your most promising reasons to support your view
- Time to Debate!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Scientific Laws and Theories

- Qualitative statement: describes something \qquad with words
- Verbal (or written) explanation
- Quantitative statement: describes something with mathematical equations
- Mathematical Equation

$$
\text { Qualitative } \quad \frac{\text { Quantitative }}{A=\pi r^{2}}
$$

Quick Activity

- Are the following qualitative or quantitative?
\qquad
\qquad

1. This is Hot
2. $45 \mathrm{~m} / \mathrm{s}$ \qquad
3. That is heavy
4. Those are bright \qquad
5. 100 mph

Scientific Laws and Theories

- Models can represent physical events: \qquad
- Model: a representation of an object or event that can be studied to understand the real object \wp event

In groups of 2,
draw a model of something

that is to large, small, or dangerous to be studied directly
\qquad
\qquad
\qquad
\qquad
\qquad

More Model Examples

- Map (paper or mental)
- Diagram in your books
- Even other classes!
- Computer/console games (COD, Minecraft, Need for Speed)
- Dinosaur skeleton

Scientific Laws and Theories

- Theories have been manipulated, or even
\qquad
\qquad discarded, over time
- Caloric Theory

Exit Ticket

\qquad
\qquad

- What are scientific theories, and how are the
\qquad
\qquad
\qquad
\qquad
\qquad

Assignment

- Section 1.1 Worksheet
- Take Own Notes (TON) 1.2

The Way Science Works

Section 1.2

Key Ideas

- How can I think and act like a scientist? \qquad
- How do scientists measure things?

Quick Activity

- In groups of 2 ...
- You come home and all the lights are off.
- Give me at least 3 reason as to WHY the lights are off.

You are "thinking" like a scientist!

Science Skills

- The most important skill to learning it learning how to THINK CRITICALLY or PROBLEM SOLVE!
- critical thinking: the ability and willingness to assess claims critically and to make judgments on the basis of objective and supported reasons
- Or... "think" about it and make an educated guess

Which is a better deal?

- You and your friend are trying to save money so you could split a 26 oz tub of candy for $\$ 4.00$ or each by a 1.75 cup container of candy for \$2.00.
- Explain....

Scientific Method

- Hypothesis: a possible explanation or answer that can be tested Movie
- You can test your hypothesis by preforming a controlled experiment
- controlled experiment: an experiment in which the variables that could affect the experiment are kept constant (controlled) except for the one that you want to measure
- Variable: a factor that changes in an experiment in order to test a hypothesis

Quick Assignment

- Worksheet on page 5
- Complete this in groups of 2
- You have 10 minutes..... GO!

Scientific Method

- Scientific Method: a series of steps followed to solve problems including collecting data, formulating a hypothesis, testing the hypothesis, and stating conclusions
- This is a "general" description of how to problem solve
- You do NOT have to do every step every time
- See 1.2 Worksheet Pages 6-9

Being Objective

- A bias occurs when what the scientist expects changes how the results are viewed.
- This expectation might cause a scientist to select a result from one trial over those from other trials.
- Example:
- A scientist is being paid by Colgate to test how effective Colgate toothpaste is.
- What may be wrong with this?

Scientific Method

- You notice that when you open the door, it squeaks.
- Come up with a hypothesis as the WHY it squeaks.
- If your hypothesis was not supported... was the experiment a failure?
- Explain

Measurements

- Get into groups of 2.
- Measure how many "___ it takes to get across the floor (carpeted area to carpeted area)
- Write the number on the board (with a label!)
- Answer the following question
- Which of the measurements on the board is the largest?

Measurement System

- Suppose the label on a ball of string indicates that the length of the string is 150 .
- Will the string stretch across the room?
- Is the length 150 feet, 150 m , or 150 cm ?
- For a measurement to make sense, it must include a number and a unit.

Measurement System

- The English system of measurement is commonly used in the United States.
- Most other nations use the metric system - a system of measurement based on multiples of ten.
- Does anyone know the 3 countries that use the English system?
- USA, Liberia, Burma

Measurements

- Scientists use standard units of measure that together form the International System of Units, or SI.

Quantity	Unit	Abbreviation
Length	meter	m
Mass	kilogram	kg
Time	second	s
Temperature	kelvin	K
Electric current	ampere	A
Amount of substance	mole	mol
Luminous intensity	candela	cd

SI units are used for consistency

- There are 7 base units
- Each type of SI measurement has a base unit.
- For example, the meter is the base unit of length.
- Copy this info in your

Quantity	Unit	Abbreviation
Length	meter	m
Mass	kilogram	kg
Time	second	s
Temperature	kelvin	K
Electric current	ampere	A
Amount of substance	mole	mol
Luminous intensity	candela	cd

Derived Units

- Derived Unit: is a combination of base units
- Km/h, m/s, kg/L
- Density, speed

SI Prefixes

Kilo	Hecto	Deca	Base Unit	Deci	Centi	Milli
K	h	da	g,m,s	d	c	m

Think up a mnemonic to remember this!
Kids Have Dropped Over Dead Converting Metrics
Km --> kilometer cm -->centimeter
hg --> ___ ds --> ___ dag --> ___

Converting between SI Units

- A conversion factor is a ratio that is equal to one and is used to change one unit to another.
- For example, there are 12 eggs in 1 dozen eggs

$$
\frac{1 \text { dozen eggs }}{12 \text { eggs }}=1
$$

- What are some more?

Converting between SI Units

K h da g,m,s d c m
How many cm in 3 dm ?
Start with what you know (3 dm) and convert to what you are looking for (cm).

$$
\left.\begin{array}{l|l}
3 \mathrm{dm} \mid & \frac{10 \mathrm{~cm}}{1 \mathrm{dm}}=30 \mathrm{~cm}
\end{array} \begin{array}{l}
\text { Place a } 1 \text { in the LARGER prefix } \\
\text { And the conversion in the smaller } \\
\text { Prefix. }
\end{array}\right\} \begin{aligned}
& \text { Multiply the top and divide the bottom } \\
& 3 \mathrm{dm} \\
& \frac{10 \mathrm{~cm}}{1 \mathrm{dm}}=30 \mathrm{~cm}
\end{aligned} \begin{aligned}
& \text { Cancel out labels }
\end{aligned}
$$

Practice

- Convert the following
$-45 \mathrm{~km}=$ \qquad cm
$-5 \mathrm{~cm}=$ \qquad mm
$-3 \mathrm{~s}=$ \qquad das
$-4.5 \mathrm{~g}=$ \qquad kg
$-2000 \mathrm{~kg}=$ \qquad hg
\qquad

Activity

- Get into groups of 4
- Using a ruler and a meterstick, measure objects around the room and answer the following.
- What best represents...
- $1 \mathrm{~cm}, 1 \mathrm{dm}, 1 \mathrm{~m}$
- $5 \mathrm{~cm}, 10 \mathrm{~cm}, 15 \mathrm{~cm}$

Units of Measure

- Length: a measure of the straight-line distance between two points
- Mass: a measure of the amount of matter in an object
- Volume: a measure of the size of a body or region in three-dimensional space
- Weight: a measure of the gravitational force exerted on an object
- Video

Volume

- If you want to know the volume of a solid rectangle, such as a brick, you measure its length, width, and, height and multiply the three numbers and their units together ($V=I \times w \times h$).
- For a brick, your measurements probably would be in centimeters.
- The volume would then be expressed in cubic centimeters, cm^{3}.

Example
$5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 10 \mathrm{~cm}=250 \mathrm{~cm}^{3}$

Measuring Liquid Volume

- In measuring a liquid's volume, you are indicating the capacity of the container that holds that amount of liquid.
- The most common units for expressing liquid volumes are liters and milliliters.
\qquad
\qquad
\qquad

Measuring Liquid Volume

- A liter occupies the same volume as a cubic decimeter, dm^{3}.
- A cubic decimeter is a cube that is 1 dm , or 10 cm , on each side.

Measuring Liquid Volume

- Sometimes, liquid volumes such as doses of medicine are expressed in cubic centimeters.
- Suppose you wanted to convert a measurement in liters to cubic centimeters.
- You use conversion factors to convert L to mL and then mL to cm^{3}.

$$
\xlongequal{1.5 L}\left|\frac{1000 \mathrm{~mL}}{}\right| \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}}=1500 \mathrm{~cm}^{3}
$$

Practice

- $389 \mathrm{~mL} \rightarrow \ldots \quad \mathrm{~cm}^{3}$
- $45 \mathrm{~cm}^{3} \rightarrow$ \qquad L

Density

- Density = mass $/$ volume
- Your volume can be of a solid (cm^{3}, etc.) or of a liquid or gas (mL, L, etc.)
- Make sure you use the correct labels!!!
- What is the density of a 45 g brick with the following dimensions? ($3 \mathrm{~cm} \times 4 \mathrm{~cm} \times 2 \mathrm{~cm}$)

Assignment

- Section 1.2 Worksheet
- In class tomorrow
- Math Skills (MS) - Conversions (odds)

Organizing Data

1.3

Key Ideas

- Why is organizing data an important science skill?
- How do scientists handle very large and very small numbers?
- How can you tell the precision of a measurement?

Presenting Data

- Why is organizing data an important science skill?
- This is how you share your results!
- Data tables and graphs are wonderful things!

Section 3 Worksheet

- In groups of 2, complete the "Section 3 worksheet"

Class discussion

- Why were the particular graph types chosen \qquad for each data set?
- Give examples of when each type would be used. Explain why you chose that graph type.

Writing Numbers in Scientific Notation

- How do scientists handle very large and very small numbers?
- They use scientific notation to reduce the number of zeros
- Scientific Notation: a method of expressing a quantity as a number multiplied by 10 to the appropriate power

Scientific Notation

- This is similar to moving the decimal for SI prefixes
$10^{3}=1,000$
$10^{2}=100$
$10^{1}=10$
$10^{0}=1$
$10^{-1}=0.1$
$10^{-2}=0.01$
$10^{-3}=0.001$

Multiplying and Dividing Sci Not.

- Use the math rules for powers of 10
- When multiplying you add the powers
- When dividing you subtract the powers
- More help in Appendix B
- Page 674

Practice problems

- Page 25 (all)
- page 26 (all)

How to use your calculator

- Get out YOUR calculator
- Use the EE button

Significant Figures

- Accuracy: How close a measurement is to the \qquad true value
- How close your darts are to the bullseye \qquad
- Precision: The "exactness" of a measurement \qquad
- The number of decimals

Accurate, Precise, Both, Neither \qquad

A
B

- Can you be accurate and NOT precise? Vise Versa?

Precision

- Your measurement is determined by the precision of your instrument
- WHAT am I talking about......

Quick Activity

- In groups of 2, find the degree of precision for the following
- Beaker
- Graduated cylinder
- Ruler
- Meter stick
- Glass thermometer

Sig Figs

- Significant Figures (Sig Figs): a particular decimal place that determines the amount of rounding off to be done on the precision of the measurement
- Sig Fig Handout
- Picture

Sig Figs

- When multiplying and dividing you need to round your answers to the correct number of sig figs
- The number with the fewest sigs figs
- You do this because this number determines how many numbers you "know"
- 5.2 *1.1 = 5.7
- $5.2 * 3.22=17$

Sig figs

- What do you do if your answers has more sig figs than the number with the lowest number of sig figs?

$$
9.9 * 552.2=5466.78
$$

- You use........ Scientific Notation!!! $5466.78=5.5 \times 10^{3}$

Examples

- Make sure to label your answers!
- Careful with 6

1) $5.25 \mathrm{~m} * 25.1 \mathrm{~m}$
2) $50.2 \mathrm{~m} / 5 \mathrm{~s}$
3) $456 \mathrm{~cm} * 0.09 \mathrm{~cm}$
4) $789.444 \mathrm{~g} / 1.55 \mathrm{~L}$
5) $5.76 \mathrm{~m} * 7.22 \mathrm{~m} * 5.22 \mathrm{~m}$
6) $1234 \mathrm{~cm} * 1.5 \mathrm{~m} * 6.3 \mathrm{~m}$

Assignment

- Section 1.3 Worksheet

