\qquad Class \qquad Date \qquad
Skills Worksheet

Pascal's Principle

After you study each sample problem and solution, work out the practice problems on a separate sheet of paper. Write your answers in the spaces provided.

PROBLEM

A dentist's chair makes use of Pascal's principle to move patients up and down. Together, the chair and a patient exert a downward force of $2,269 \mathrm{~N}$. The chair is attached to a large piston with an area of $1,221 \mathrm{~cm}^{2}$. To move the chair, a pump applies force to a small piston with an area of $88.12 \mathbf{~ c m}^{2}$. What force must be exerted on the small piston to lift the chair?

SOLUTION

Step 1: List the given and unknown values.
Given: $\quad F_{2}=2,269 \mathrm{~N}$

$$
\begin{aligned}
& A_{1}=88.12 \mathrm{~cm}^{2} \\
& A_{2}=1,221 \mathrm{~cm}^{2}
\end{aligned}
$$

Unknown: F_{1}
Step 2: Write the equations for Pascal's principle and pressure, force, and area.

$$
\begin{aligned}
& p_{1}=p_{2} \\
& \text { pressure }=\frac{\text { force }}{\text { area }}
\end{aligned}
$$

Step 3: Substitute force and area into the first equation, and rearrange for the desired value.

$$
\begin{aligned}
& p_{1}=p_{2} \\
& \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}} \\
& F_{1}=\frac{\left(F_{2}\right)\left(A_{1}\right)}{A_{2}}
\end{aligned}
$$

Step 4: Insert the known values into the equation, and solve.

$$
\begin{aligned}
& F_{1}=\frac{(2269 \mathrm{~N})\left(88.12 \mathrm{~cm}^{2}\right)}{1221 \mathrm{~cm}^{2}} \\
& F_{1}=163.8 \mathrm{~N}
\end{aligned}
$$

\qquad Class \qquad
\qquad

PRACTICE

1. A hydraulic lift office chair has its seat attached to a piston with an area of $11.2 \mathrm{~cm}^{2}$. The chair is raised by exerting force on another piston, with an area of $4.12 \mathrm{~cm}^{2}$. If a person sitting on the chair exerts a downward force of 219 N , what force needs to be exerted on the small piston to lift the seat?
2. In changing a tire, a hydraulic jack lifts $7,468 \mathrm{~N}$ on its large piston, which has an area of $28.27 \mathrm{~cm}^{2}$. How much force must be exerted on the small piston if it has an area of $1.325 \mathrm{~cm}^{2}$?
3. An engine shop uses a lift to raise a $1,784 \mathrm{~N}$ engine. The lift has a large piston with an area of $76.32 \mathrm{~cm}^{2}$. To raise the lift, force is exerted on a small piston with an area of $12.56 \mathrm{~cm}^{2}$. What force must be exerted to raise the lift?

PROBLEM

An engineering student wants to build a hydraulic pump to lift a $1,815 \mathrm{~N}$ crate. The pump will have two pistons connected via a fluid chamber. The student calculates that a force of 442 N will be exerted on the small piston, which will have an area of $50.2 \mathbf{~ c m}^{2}$. What must the area of the large piston be to exert the desired force?

SOLUTION

Step 1: List the given and unknown values.
Given: $\quad F_{1}=442 \mathrm{~N}$

$$
\begin{aligned}
& A_{1}=50.2 \mathrm{~cm}^{2} \\
& F_{2}=1,815 \mathrm{~N}
\end{aligned}
$$

Unknown: A_{2}
Step 2: Write the equations for Pascal's principle and pressure, force, and area.

$$
\begin{aligned}
& p_{1}=p_{2} \\
& \text { pressure }=\frac{\text { force }}{\text { area }}
\end{aligned}
$$

Step 3: Substitute force and area into the first equation, and rearrange for the desired value.

$$
\begin{aligned}
& p_{1}=p_{2} \\
& \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}} \\
& A_{2}=\frac{F_{2}\left(A_{1}\right)}{F_{1}}
\end{aligned}
$$

\qquad Class \qquad
\qquad

Step 4: Insert the known values into the equation, and solve.

$$
\begin{aligned}
& A_{2}=\frac{(1815 \mathrm{~N})\left(50.2 \mathrm{~cm}^{2}\right)}{442 \mathrm{~N}} \\
& A_{2}=206 \mathrm{~cm}^{2}
\end{aligned}
$$

PRACTICE

4. In a newly designed car with a hydraulic braking system, a force of 85 N is applied to one of the master cylinders, which has an area of $8.1 \mathrm{~cm}^{2}$. The master cylinder is connected to one brake piston, which exerts a force of 296 N. What is the area of the brake piston?
5. A mechanic uses a hydraulic car jack to lift the front end of a car to change the oil. The jack used exerts $8,915 \mathrm{~N}$ of force from the larger piston. To pump the jack, 444 N of force is exerted on the small piston, which has an area of $3.14 \mathrm{~cm}^{2}$. What is the area of the large piston?
6. A student in the lunchroom blows into his straw with a force of 0.26 N . The column of air pushing the liquid in the glass has an area of $0.21 \mathrm{~cm}^{2}$. If the liquid in the glass pushes upward with a force of 79 N , what is the area of the liquid at the surface of the glass?

PROBLEM

The motor on a construction-grade hydraulic shovel exerts $3.11 \times \mathbf{1 0}^{\mathbf{7}} \mathrm{Pa}$ of pressure on a fluid tank. The fluid tank is connected to a piston that has an area of $153 \mathbf{c m}^{\mathbf{2}}$. How much force does the piston exert?

SOLUTION

Step 1: List the given and unknown values.

$$
\begin{array}{ll}
\text { Given: } & p_{1}=3.11 \times 10^{7} \mathrm{~Pa} \\
& A_{2}=153 \mathrm{~cm}^{2}
\end{array}
$$

Unknown: F_{2}
Step 2: Write the equations for Pascal's principle and pressure, force, and area.

$$
\begin{aligned}
& p_{1}=p_{2} \\
& \text { pressure }=\frac{\text { force }}{\text { area }}
\end{aligned}
$$

\qquad Class \qquad
\qquad
Math Skills continued

Step 3: Substitute force and area into the first equation, and rearrange for

 the desired value.$$
\begin{aligned}
& p_{1}=p_{2} \\
& p_{1}=\frac{F_{2}}{A_{2}} \\
& F_{2}=\left(p_{1}\right)\left(A_{2}\right)
\end{aligned}
$$

Step 4: Insert the known values into the equation, and solve.

$$
\begin{aligned}
& F_{2}=\left(3.11 \times 10^{7} \mathrm{~Pa}\right)\left(153 \mathrm{~cm}^{2}\right) \\
& F_{2}=\left(\frac{3.11 \times 10^{7} \mathrm{~N}}{\mathrm{~m}^{2}}\right)\left(1.53 \times 10^{-2} \mathrm{~m}^{2}\right) \\
& F_{2}=4.76 \times 10^{5} \mathrm{~N}
\end{aligned}
$$

PRACTICE

7. A small crane has a motor that exerts 2.41×10^{7} of pressure on a fluid chamber. The chamber is connected by a fluid line to a piston on the crane arm. If the piston has an area of $168 \mathrm{~cm}^{2}$, how much force does the piston exert?
8. A bicycle pump uses Pascal's law to operate. The air in the hose acts as a fluid and transfers force and pressure from the piston to the tire. If a pump has a piston with an area of $7.1 \mathrm{~cm}^{2}$, how much force must be exerted on it to create a pressure of $8.2 \times 10^{5} \mathrm{~Pa}$?
9. A small backyard log splitter has an engine that applies 1.723×10^{7} of pressure to a fluid tank. The tank is connected to a piston with an area of $81.07 \mathrm{~cm}^{2}$. How much force can the piston exert?

MIXED PRACTICE

10. A force of 38.7 N is applied to the master cylinder of a hydraulic brake system. The cylinder has an area of $7.61 \mathrm{~cm}^{2}$. The force from the master cylinder is transferred, by brake fluid, to two brake cylinders that have a total area of $49.1 \mathrm{~cm}^{2}$. How much total force is exerted by the brake cylinders?
11. A factory lift is used to raise a load of $2,225 \mathrm{~N}$ on a piston that has an area of $706.8 \mathrm{~cm}^{2}$. How much pressure does the lift's engine need to exert on the hydraulic fluid to lift the required load?
