\qquad Class \qquad Date \qquad

Concept Review

Section: Acceleration

1. Calculate the average acceleration of a car that changes speed from $0 \mathrm{~m} / \mathrm{s}$ to $15 \mathrm{~m} / \mathrm{s}$ in 5 s .
2. Explain why you are always accelerating when you ride a merry-go-round, even though the speed of the merry-go-round does not change.
3. Graph the data from the table below onto a speed vs. time graph. Label both axes. Plot all the data points and draw a straight line connecting them.

Car Speed

Time (s)	Speed (m/s)
0	0
1	7.5
2	15.0
3	22.5
4	30.0

a. Determine the car's acceleration.
4. Calculate how long it takes for a stone falling from a bridge with an average acceleration downward of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ to hit the water. The stone starts from rest and hits the water with a velocity of $12.3 \mathrm{~m} / \mathrm{s}$.
5. Identify the straight-line accelerations below as either speeding up or slowing down.
\qquad a. $0.75 \mathrm{~m} / \mathrm{s}^{2}$
\qquad b. $24.8 \mathrm{~m} / \mathrm{s}^{2}$
\qquad c. $-3.9 \mathrm{~m} / \mathrm{s}^{2}$

