Heat and Temperature

Chapter 14

Temperature

Section 14.1

Key Ideas

- What does temperature have to do with NRG?
- What 3 temperature scales are commonly used?
- What makes things feel hot or cold?

Temperature and NRG

- **Temperature** is the measure of how hot or cold something is
- It is also the measure of average kinetic NRG
- It is proportional to the average kinetic NRG – What does this mean?

As one goes up, the other goes up

Particles and Kinetic NRG

- Remember that all particles are moving so all particle have kinetic NRG
- Also, as particles more faster they take up more space
 - Why do they take up more space?

Thermometer

- A thermometer relies on the previously stated phenomenon
- A **thermometer** is an instrument that measures and indicates temperature
- As the temperature rises, the particles move faster and as the particle move faster they take up more space
- This causes the fluid in the thermometer to...

Temperature Scales

- There are 3 "commonly" used scales
- The Fahrenheit, Celsius, and Kelvin temperature scales are commonly used for different reasons
 - Different parts of the world
 - Scientific reasons

Temperature Scales

- Fahrenheit (°F)
 - Water boils at 212 °F
 - Water freezes are 32°F
- Celsius (°C)
 - Water boils at 100 $^{\rm o}{\rm C}$
 - Water freezes are $0^{\rm o}{\rm C}$
- Kelvin(K)
 - Water boils at 373 K
 - Water freezes are 273 K

Temperature Scales

- Celsius is based on water freezing at 0°C and water boiling at 100°C
- Kelvin is based on absolute zero
 - Absolute zero is the temperature when molecular motion is at a minimum (stopped)

Conversions

Fahrenheit to Celsius

$$T_F = 1.8 * T_C + 32$$

Kelvin to Celsius

 $T_K = T_C + 273$

Practice

- Get into groups of 2-3 and complete the following
- Page 477
- All

Relating Temperature to NRG Transfer

• Why does ice feel cold?

- The particles in the ice are moving slower than the particles in your hand
- The faster moving particles in your hand transfer some of their NRG to slower moving particles in the ice
 - This NRG transfer makes the ice feel cold (and makes the ice melt)

Average vs. Total Kinetic NRG

- As stated earlier, average kinetic NRG is related to temperature while <u>total</u> kinetic NRG is related to mass/amount
- The larger something is, the more particles it contains and the more particles it contains the more <u>total</u> kinetic NRG it has

1 minute...

Answer the following questions

- 1. Which has a higher average kinetic NRG, boiling cup of water or room temperature cup of water? Explain.
- 2. Which has a higher total kinetic NRG, boiling cup of water or room temperature cup of water? Explain.
- 3. Which has a higher total kinetic NRG, boiling cup of water or room temperature bathtub of water? Explain.

Relating Temperature to NRG Transfer

- When there is a temperature change, it indicates the transfer of NRG
- Heat is the NRG transferred between objects that are at different temperatures
- Heat always goes from higher temperature to lower temperature

Group Work

Indicate which way the heat is flowing in the following situations

- 1. You touch a hot burner on the stovetop
- 2. You open the front door in the middle of the winter
- 3. You grab a metal fence post on a 100 $^{\rm o}{\rm F}$ day
- 4. You open the refrigerator door

Assignment

- EOSQ (1-7)
- CR 14.1 (all)
- Math Skills Temperature Conversions (1-15, 18)

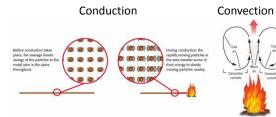
NRG Transfer

Section 14.2

Key Ideas

- How does NRG transfer happen?
- What do conductors and insulators do?
- What makes something a good conductor of heat?

Methods of NRG Transfer


- There are 3 ways this can happen:
 - Conduction
 - Convection
 - Radiation

Conduction

- Thermal conduction happens through a material
 - i.e. the metal handle of a metal pot gets hot when it is placed on the burner
 - Think of another example
- This is caused when the faster moving particles run into the slower moving particles

Convection

- **Convection** is the movement of matter due to the differences between densities that are caused my temperature differences.
 - This is the movement of matter
 i.e. warm air moves into cooler air
- A convection current is movement of this matter
- Think of heating your house in the winter

Radiation

- **Radiation** is the NRG that is transferred as electromagnetic waves
 - Visible light, microwaves, UV rays...
- Radiation does NOT require matter like the other 2 methods of heat transfer.
- This is the NRG we receive from the sun
 - What is another example of radiation?

Conductors and Insulators

• A **conductor** is a material in which NRG can transfer as heat

– Ex. ?

• An **insulator** is a material in which NRG cannot transfer as heat

— Ex. ?

Conductors and Insulators

- Heat energy is transferred through particle collisions.
 - Gases are very poor heat conductors because their particles are so far apart.
 - Denser materials usually conduct energy better than less dense materials do.
 - Metals tend to conduct energy very well.
 - Plastics conduct energy poorly

Specific Heat

- Specific heat is the amount of heat required to raise the temperature of 1 kg of a substance 1 K (or 1 °C)
 - What????
 - The higher the specific heat the more "heat" it takes to warm it up
- The specific heat helps determine if something is an insulator or a conductor

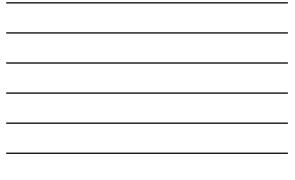
Specific Heat

Math Equation

NRG = Specific Heat * Mass * Change in Temp

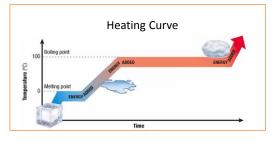
 $E = cm\Delta T$

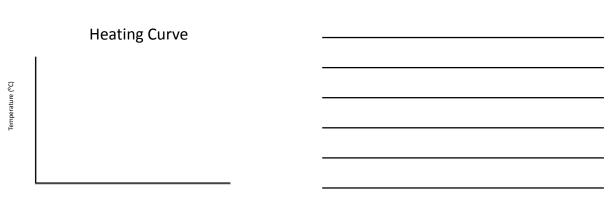
Mass is in Kg Temp is in Kelvin


Group Work

• Page 486

• 1-2


Specific Heat Values


Substance	c (J/kg•K)	Substance	c (J/kg•K)
Water (liquid)	4,186	Copper	385
Ethanol (liquid)	2,440	Iron	449
Ammonia (gas)	2,060	Silver	234
Steam	1,870	Mercury	140
Aluminum	897	Gold	129
Carbon (graphite)	709	Lead	129

Specific Heat

• Heat raises an objects temperature OR changes the state of matter

NRG Absorbed (J)

Assignment

- EOSQ (2, 5-7)
- CR 14.2 (not 4)
- MS Specific Heat