Chapter 13	
Work and NRG	
Work NRG and Machines	
Work, NRG, and Machines	
13.1	
Key Ideas	
How is work calculated?	
now is work calculated:	
What is the relationship between work and power?	
Hoe do machines make work easier?	
TICE GO TRACTITIES THAKE WOLK EASIEL:	

What is work?

- To many people, the word work means something they do to earn money.
- The word *work* also means exerting a force with your muscles.
- Someone might say they have done work when they push as hard as they can against a wall that doesn't move.
- However, in science the word *work* is used in a different way.

What is Work?

 Work is done when a force is applied to an object and the object moves in the that direction.

Work Equation

W = Fd

What is Work?

- Which of the following situations display work being done by the underlined word?
 - 1. A man lifts a box up from the ground
 - 2. A lady holds a branch up off the ground
 - 3. You are holding a book and carrying to the other side of the room

,		

What is Work?	
 Work is measured in joules (J) 1 joule = 1 N*m 	
$-1 \text{ joule} = 1 \text{ kg*m}^2/\text{s}^2$	
 Work is 0 when an object is not moving 	
Are you doing work on a wall when you do a	
wall sit?	
– Why do you get tired?	
Is this beaker doing work?	
Quick Lab	
(10 minutes)	
Get a 500 gram mass (or make one)	
Grab a BROWN Spring scale	
• Hang the mass from the scale and record the	
reading in N (Is work being done?) • Lift the mass and record the MAX N reading.	
(Is work being done?)	
 Hold the scale at shoulder length and walk 5 	
steps SLOWLY. (Is work being done?)	
Examples	
How much work are you doing if you apply 135	
N of force to climb 60 m up a ladder?	
135 * 60 = 8100 J	
How much force is required to climb up 30	
meters of a ladder if you use 550 J of work to do it?	
550 / 30 = 18.33 N	

Practice	
Complete page 432	
Tunu 3	
Power	
Suppose you and another student are pushing boxes of books up a ramp and load them into	
a truck. To make the job more fun, you make a game	
of it, racing to see who can push a box up the ramp faster to see who is more powerful. Power is the amount of work done in one	
second. It is a rate—the rate at which work is done.	
How can we figure out who is more powerful?	
Calculating Power	
To calculate power, divide the work done by the time that is required to do the work.	
$Power(W) = \frac{Work(J)}{Time(s)}$ $P = \frac{w}{t}$	
The SI unit for power is the watt (W). One watt	
equals one joule of work done in one second.	

Calculating Power	
 Because the watt is a small unit, power often is expressed in kilowatts. 	
One kilowatt (kW) equals 1,000 W.	
Examples	
How much power is required to perform 450 J of work in 30 seconds?	
450 / 30 = 15 W	
How much work is required to produce 0.550 kW of power in 10 seconds?	
550 * 10 = 5500 J	
Practice	
Complete 1-2 on pare 434	

Machines and Mechanical Advantage • Machines help do work by changing the size of the input force, the direction of the force, or both Machines can also make a greater force by decreasing the distance - Car jack Machines and Mechanical Advantage Mechanical advantage is a number that tells you how much a machine multiplies the force or distance $MA = \frac{F_{out}}{F_{in}}$ Machines and Mechanical Advantage • What is the MA for a machine that produces 500 N when you apply 300 N? · What is the MA for a teeter-totter that lifts a box 3.4 meters when you push the other side down 1.9 meters?

Machines and Mechanical Advantage	
What is the output force of a machine that	
has a MA of 2.6 and a 17 N input force is applied?	
арриса.	
. Have for did one work days the backer bakker if	
 How far did you push down the teeter-totter if it has a MA of 2.2 and it raised 1.2 cm? 	
More practice on parte 436	
Machines and Mechanical Advantage	
 Machines do not change the amount of work done! 	
 How much work is done when you lift a 225 N box 1 meter into the back of a truck? 	
How much work is done when you apply a 75	
N force to push the same box up a 3 meter long ramp?	
long ramp:	
Assignment	
•	
• Page 437 (1-4) • CR	
• Math Skills	
– Work – Power	
– Power – Mechanical Advantage	

Simple Machines	
Simple Machines	
13.2	
<u>.</u>	
Key Ideas	
• What are 6 types of simple machines?	
What are the 2 principle parts of all levers?	
 How does using an inclined plane change the force required to do work? 	
What is a cmpd machine?	
What are Simple Machines?	
 A Simple Machine is one of 6 machines which are the basics of all other machines 	
 Lever Pulley 	
3. Wheel and Axle	
4. Incline Plane 5. Screw	
6. Wedge	

2 Families of SM

- · Lever Family
 - Lever
 - Pulley
 - Wheel and Axle
- Incline Plane Family
 - Incline Plane
 - Wedge
 - Screw

Lever Family

- A lever is a bar that is free to pivot or turn around a fixed point.
- The fixed point the lever pivots on is called the <u>fulcrum</u>.
- There are 3 Classes of levers

Levers

- What is an example of a 1st class lever?
- What is an example of a 2nd class lever?
- What is an example of a 3rd class lever

Ideal MA of a lever

• The MA of a lever can be calculated from this equation:

$$MA = \frac{d_{in}}{d_{out}}$$

• This is the distance from the fulcrum

Pulley

- A pulley is a grooved wheel with a rope, chain, or cable running along the groove.
- A fixed pulley is a modified <u>first-class lever</u>.
- The axle of the pulley acts as the fulcrum.

Pulley

- The two sides of the pulley are the input arm and output arm.
- A pulley can change the direction of the input force or increase input force, depending on whether the pulley is fixed or moveable.

Fixed Pulley

- A fixed pulley is attached to something that doesn't move, such as a ceiling or wall.
- Because a fixed pulley changes only the direction of force, the MA is 1.

Movable Pulley

- A pulley in which one end of the rope is fixed and the wheel is free to move is called a movable pulley.
- Unlike a fixed pulley, a movable pulley does multiply force.

Movable Pulley

- With a movable pulley, the attached side of the rope supports half of the 4-N weight.
- You have to apply a 2-N force to lift the weight.

Movable Pulley The output force exerted on the weight is 4 N, and the applied input force is 2 N. Therefore the MA of the movable pulley is 2. For a fixed pulley, the distance you pull the

- rope downward equals the distance the weight moves upward.

 For a movable nulley the distance you pull to
- For a movable pulley, the distance you pull the rope upward is twice the distance the weight moves upward.

The Block and Tackle

- A system of pulleys consisting of fixed and movable pulleys is called a <u>block and tackle</u>.
- The MA of a pulley system is equal to the number of rope segments that support the weight.

Wheel and Axel

 A wheel and axle is a simple machine consisting of a shaft or axle attached to the center of a larger wheel, so that the wheel and axle rotate together.

1	7
ı	_

Wheel and Axel

- Doorknobs, screwdrivers, and faucet handles are examples of wheel and axles.
- Usually the input force is applied to the wheel, and the output force is exerted by the axle.

Inclined Plane

 A sloping surface, such as a ramp that reduces the amount of force required to do work, is an inclined plane.

MA of an incline plane

- By pushing a box up an inclined plane, the input force is exerted over a longer distance compared to lifting the box straight up.
- The MA of an inclined plane can be calculated from this equation.

Ideal Mechanical Advantage = $\frac{Length\ of\ Slope\ (m)}{Height\ of\ Slope\ (m)}$

$$IMA = \frac{l}{h}$$

 The MA of an inclined plane for a given height is increased by making the plane longer.

Screw	
 A screw is an inclined plane wrapped in a spiral around a cylindrical post. 	
• The MA of a screw is related to the spacing of	
the threads.	
 The MA is larger if the threads are closer together. However, if the MA is larger, more 	
turns of the screw are needed to drive it into	
some material.	
Wodgo	
Wedge	
• The wedge is also a simple machine where the inclined plane moves through an object or	
material.	
• A wedge is an inclined plane with one or two sloping sides. It changes the direction of the	
input force.	
Compound Machine	
 Two or more simple machines that operate together form a compound machine. 	

The fixed point the lever pivots on is	
called the	
A. Pivot point	
B. Fulcrum C. Center	
D. None of the above	
If you double the length of the input	
arm on a lever, the MA will	
• Numeric	
It will become times larger/smaller.	
tit will become times larger/smaller.	
• If the number is smaller place a – in front of	
the number	
What is the MA for a ramp that is 12	
meters long and 450 cm tall?	
• Numeric	