Name \qquad

$$
\mathrm{a}=\frac{\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}}{\mathrm{t}}
$$

1. A car starts from rest and accelerates uniformly to a speed of $52.3 \mathrm{~m} / \mathrm{s}$ over a time of 5.21 seconds. Determine the acceleration of the car.
(equation) (numbers and units)
(answer)
$\mathrm{a}=$
$\mathrm{V}_{\mathrm{f}}=$
$\mathrm{V}_{\mathrm{i}}=$
$\mathrm{t}=$
2. A race car accelerates uniformly from $18.5 \mathrm{~m} / \mathrm{s}$ to $46.1 \mathrm{~m} / \mathrm{s}$ in 2.47 seconds. Determine the acceleration of the car.
3. A feather is dropped on the moon from a height of 1.40 meters. The acceleration of gravity on the moon is $1.67 \mathrm{~m} / \mathrm{s}^{2}$. Determine the time for the feather to fall to the surface of the moon if the feather has a velocity of $2.15 \mathrm{~m} / \mathrm{s}$ right before it hits the moon.
4. Rocket-powered sleds are used to test the human response to acceleration. If a rocket-powered sled is accelerated from rest to a speed of $444 \mathrm{~m} / \mathrm{s}$ in 1.83 seconds, then what is the acceleration?
5. A car traveling at $22.4 \mathrm{~m} / \mathrm{s}$ skids to a stop in 2.55 s . What is the acceleration of the car?
6. It was once recorded that a Jaguar running at $47.6 \mathrm{~m} / \mathrm{s}$ skidded to a stop and left marks that were 290 m in length. Assuming that the Jaguar skidded to a stop with a constant acceleration of $-3.90 \mathrm{~m} / \mathrm{s}^{2}$, how long did it take the Jaguar to stop?
